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Summary

Diffraction of surfacewavesby a very large floating platformis studiedfor the caseof finite waterdepth. In our paper
largeplatformis theflexible thin quarterinfinite plate. By usingof ray methodwe describethe propagatiorof wave modes

insideof theplatformareasequentially
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1 Introduction

Recentlythe problemsof the behavior of floating flexible
thin plateson wavesobtainedgreatinterest.This sectionof
hydroelasticityis importantandwell studiedby numerical
approachesvhile remainsomedifficulties with analytical
investigationespeciallyfor the caseof finite depth.

Thethicknessf theverylargefloatingplatform(VLFP)
comparedto horizontal parameterss small and they are
modeledasthin elasticplates.The dimensionof theseob-
jectscanbein orderof 5km in lengthandlkm in width while
thicknesss around10m.

In HERMANS[1], [2], ANDRIANOV andHERMANS [3],
[4] solutionsfor the deflectionandthetransmissiorandre-
flectioncoeficientsareobtainedor infinite, finite andshal-
low waterdepthfor suchformsof the platform: the strip of
the infinite lengthandthe semi-infiniteplate. The results
were presentedt the previous IWWWEB in [3]. Hereis
theorydevelopedfurtherfor the quarterinfinite plate.

HErRMANS [1] derivedanexactintegral-differentialequa-
tion for the deflectionof a VLFP atdeepwater The equa-
tion was solved numericallyby meansof a boundaryel-
ementmethodand a mode expansion. Later HERMANS
[2] usedthis formulationto derive boundaryconditionsto
apply the ray methodfor short wave diffraction. Some
otherapproachesanbe usedfor the solutionof this class
of problems for instanceparabolicapproximatiormethod,
seeTAKAGI [5], OHKUsSU andNAMBA [6].

Herewe studythediffractionof surfacewavesby VLFP
in the form of quarterinfinite plate (QIP) floating on the
surfaceof a fluid of finite depth. It is reasonableo split
upthe problemontwo casesthefirst with obliqueincident
wavesandthe secondwith perpendiculawaves. We usea
ray methodfor the solutionwhich consistsof 3 parts.

The platform is idealizedas a plate with elasticprop-
ertiesof zerothickness.In this paperwe ignorethe effect
of cornerpoint. An analyticalstudyis presentedor the
deflectionin all partsof the solution. Thefirst partof the
solutionis basedon theapproach([2], [3]) for theproblem
of a semi-infinite platform. Therean integral-differential
equationaGreensfunction,boundaryandedgeconditions
areused. Onetraveling andsomeevanescentvave modes

are considered.A specialtyof presentapproachis in the
consideratiorof the propagatiorof traveling mode (main
ray) of thesolutionandcalculationof its reflectionon other
edgeof the platform (asQIP is consideredplatformhas2
edgesperpendiculaeachother). Later a specialmatching
conditionintroducedalongtheline which split up the plat-
form areaon partwherethe 'inner’ reflectionis exist and
whereis not. This conditionis valid in all areaof the plate.

2 Formulation of the Problem

We considera floating flexible thin plate which coversa
quarter(x > 0,y > 0) of thesurfaceof anidealincompress-
ible fluid of depthh. zis the positive upwardscoordinate.
We assumenavesin still waterandintroducethe velocity
potential ID(x,y,zt) = V(x,y,zt) whered(x,y,zt) is a
solutionof the Laplaceequation
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in thefluid (z < 0) togethemith the conditionatthebottom
(z= —h) 0®/0z = 0 andsurfaceconditionsatz= 0
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wherew(x,y,zt) denoteshe free surfaceelevation under
theplatform, F istheopenfluid area(—o < x< 0,0<y <
00 J —00o < X< 00, —00 <Y< 0)and? is theplatformarea.
The dividing surfacesaredefinedas.sy (x= 0,0 < y < )
andas Sy (0 < X < w0,y = 0). Thefluid region wherethe
incidentfield andreflectedwavesfrom Sy coexistis defined
as 71 andtheregion in which incidentwavestransmitting
Sx as F2. Incoming shortwaves propagateérom the open
fluid in thedirectionwhich makesananglep to x axis(it is
shavnin figurel).

The platformdraftd is shallav andthe platformis as-
sumedto be athin layeratthe free surface. VLFP is mod-
eledthenasanelasticplatewith zerothickness.To describe
thedeflectionof the platformw we applythethin platethe-
ory, which leadsto a differential equationof the vertical
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Figurel: Geometryof the problem
displacementf the platform:
22\ 0?w

atz= 0in theplatformarea®, wheremis the massof unit
areaof the platform, D is its equivalent flexural rigidity,
P(x,y,z1) is thelinearizedpressure

oD
P=p— Fra 4)

herep is the densityof the water After applyingthe op-
eratord/ot to (3) andusing (2) and (4) we arrive at the
following equationfor ® atz= 0:
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whereparameterare” = D/pg andu = m/pg.

Theedgeof theplatformarefreeof momentandshear
force,thenedgeconditionsat Sy (x = 0) are:

°w  0°w 3w 3w
o PV =0 5T Vgge=0 ©
andat Sk (y = 0):
P®w  Pw  _ ddw 0w
a—y2+VW =0; W-’_(Z_V)—ayaxz = (7)

wherev is Poissors ratio. The harmonicwave canbe writ-
tenin theform ®(x,y,zt) = g(x,y,2)e~'*. Thenwe reduce
time-dependencendconsidemwavesof a singlefrequeny
wandobtainatz=0:
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whereK = w?/g. For finite waterincidentwavesequals

—Ke=0, (8)

qi’nc — COSH(O(Z"' h) gA |k0 xcos(3+ysm[3) (9)
coshkgh W

hereA is thewave heightandthewave numberkg obeysthe
waterdispersiorrelationkg tanhkoh = K. Lengthof incom-
ing wavesis A = 211/ko.

3 Solution (Platform Area)

We considerthe caseof obliguewavesincomingfrom the
field (x < 0,y > 0) with angleof incidenceB, 0 < B < 11/2.
As the effect of cornerpoint (x = 0,y = 0) is not consid-
ered,we may useray methodfor this geometryof incident
field. An integral-differentialformulationderivedin HER-
MANS [2] andANDRIANOV andHERMANS [4] for thecase
of finite depth.

Thedeflectionof the platformdueto the propagatiorof
mainwave modesrepresenteésa superpositiorof expo-
nentialfunctionin thefollowing form

Wl X y Z anelknx+|k0ysmB (10)
wherea,, arethe amplitudesof wave modesandky, arere-
ducedwave numbersw; is thelargestpartof thedeflection
correspondetb the situationwhenraystransmits$, but not
reachsSy yet.

Wave functionsk, definedas

k2 = kM2 _K3sir? B, (11)
herek(" arerootsof thedispersiorrelation
(DK — p+ 1)k tanhkh = ko. (12)

Numbern = N + 1 denoteghe numberof rootstakinginto
accouni(onerealandN imaginary)leadusto findingN + 3
unknowvn amplitudesa,.

We introducethe Greens function after splitting up the
fluid domainandusingthe thin platetheoryfor the deter
minationof wy. If theintegral-differentialformulation,the
surfaceconditionsandGreens theoremareusedto the po-
tentialsin ¢ and F respectiely, we obtainsuchintegral-
differentialequation:
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+Aé’ko(xcosﬁ+ysin[3)’ (13)

Greensfunctionhasthefollowing form:

kcoshkh
ksinhkh — K coshkh

G(xy;&,n) =— Jo(kr)dk (14)

ya
atz=0,where,’ is contourof integrationin thecomple< k-

planefrom O to +c underneathhe singularityk = kg, cho-
senfor fulfilling the radiationcondition, Jo(kr) - Bessel

functionandr? = (x—&)%+ (y—n)2.
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Figure2: Contourof integration

We considerthe zerosof dispersionrelationfor water
surfaceandthenreplacingof (10) into (13) resultin
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Here X = koK / (K(1—Kh)+k3h). Tocompletethesystem
of N + 3 equationstwo equationsmay be obtainedfrom
edgeconditions(6). Now amplitudefunctionsa,, andfunc-
tion wy canbereceved.

We investigatethe propagatiorof mainray further. Af-
ter the reflectionof traveling wave mode (mainray) on Sx
with anangleb (thatis shavn in figure 3) the QIP getthe
addeddeflectionw, generatedby the vibration of the plate
edgesx:

Wo (X, V) = *en(;y+iK1x’
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wherea, arethe amplitudesafter the reflectionat Sx and
correspondesvave numbersarek;:? = k(W2 — k3. By this
way Ki = —kosinp andthe largestterm of reflectedtrav-
eling wave is aje~*oYSinB+ikix  |n mathematicaplan &,
arethe solutionsof the systemdependingrom a; (k1) and
consistingfrom integral-differentialand edgeequationsat
y=0.

(16)
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Figure 3: Reflectionof traveling wave mode(mainray) at
X-axis

In generalthe deflectionof the QIP canbe written in
thefollowing form:

W(Xa y) = Wl(Xa y) + WZ(Xa y) (17)

wherew; (x,y) andw.(x,y) weredescribedalready There-
flectedpartof thedeflectionw; existsin theregionx/ tan® >
y. Theangleof theray reflection® may be obtainedfrom
tand = ko/K1.

To find wp we applyananalysissimilar to the determi-
nation of wy. Integral-differentialformulationleadsus to
theequatiorfor a;;:
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with thetwo edgeconditions(7).

Now deflectionfunctionsw; andw, are known. We
obtainthefollowing intermediateesultsfor total deflection
w(x,y) in platformzones:in P, (x < ytan8) w=w; andin
P, (X > ytanf) w = wq + Wo.

In next sectionthe presentapproachwill be improved
by the introducinga specialmatchingconditionalongthe
borderbetweenthesezonesandwe will find anew partof
total deflection.

+ai(k1) =0 (18)

4 Matching Condition

Here we derive the matchingconditionsalongthe border
x = ytan@ which split up the platform areain P, and 7.

By introducingof theseconditions the constructiornof the
solutionfor whole areaof the platformwill be completed.
Insteadof the function w, will usednew deflectionfunc-
tion, which exist in bothzones.

Forthecaseof obliguewaveswe usea’straight-forward’
ray method. For a perpendiculaiincident field OHKUSU
andNAMBA [6] obtainedasolutionfor platformwhichfloats
on shallov water by usinga parabolicapproximationand
matchingof differentzones.

We usethe generalformulation for the diffraction of
wavesby QIP andapplytheray method.Thesolutionof the
Laplaceequation(1) is ®(X,t) andthe potentialof undis-
turbedincidentwave @"° is givenby (9).
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Figure4: Geometryof currentanalysis

Letusconsidethenew systenof coordinate®x'y’ which
is obtainedby rotationanglert/2 — 6 from Oxy andx is the
borderbetween?; and P, andits directionis coinciding
with directionof raysafterreflectionaty = 0.

We assumethat the potentialunderneattthe platform
canbewritten asa superpositiorof ray-modesolutions

Px) = 5 on()E*H, (19)
n
wheredn(x) is theamplitudefunction of the nth mode.We
skip the primes.Thedeflectionis representetly
We(6y) = 2 (). (20)
wg
We assumethat our approximationis valid in whole

areaof the platform. Insertionof (19) to Laplaceequation
(1) gives:

DG + 2K(idx + ¢2) + O(K%) = 0. (21)

We write y* = K1/2y, k = Kr andeliminatethe z-derivative
by thefollowing expression

b2= —it— 2L
Insertionof (19) into (8) lead us afterdroppingthe as-
teriskto:

(22)

O(K): (Dr*—p+1)r=1. (23)
and
O(K®: (Dr*—u+1) (-iq;x— ¢2—yry)
+D(—2r3yy —4ir'py) =0 (24)



(23) is the dispersiorrelationat z= 0. Now partial differ-
entialequation

2ir dx + dyy = O (25)

haveto beconsideredTwo termsareequalin orderof mag-
nitudewhenx = O(1) andy = O(K%/?)

Useof Laplacetransformi(s,y) = [ ¢(x,y)e~S*dx lead
0

[

usto thefollowing equation:

2irsy + Py = 2ir¢(0,y) (26)
andwe requirethe initial conditions,seeMEI and Tuck
[7], which differswith changeof signof y:

#(0,y) =As, y<0; (27
$(0,y)=0,y>0. (28)
Valueof the constantAs may be obtainedfrom the second

partof our solutionby usingof theresultsfor wo.
Fromgenerabkolutionof (26) we arriveto theequations:

W (sy) = (9’4 22, (29
Wt (sy) = Ba(s)e VY. (30)

with speciahotationof theamplitudefunctionandits trans-
forms: ¢~ andy~ in regiony < 0 and$™ and ™ in re-
giony > 0. We candeterminethe constantsia; = —f32 =
—As/2s. Applying of Laplaceinversetransformandusing
of transitionconditionsp™ = ¢~ and¢; = ¢ aty = Olead
usto thefollowing formulasfor the amplitudefunction:

yW2r
A Y 2\/x
O (xy) = 22 / Mg\ — / eMd\ ) +As, (31)
N
0 0
yWair
o 2y/X

¢+(X,y)=% ( / e dA— / e‘”dx). (32)
0 0

After the calculationof theintegral valuesof the potential
in the platform areaand respectiely of the deflectionws
may be determinedoo.

5 Reaults& Conclusions

Finally, the total deflectionof the quarterinfinite platform
is written asthe following sum:

(33)

in thewhole areaof the platform,wherethefirst termis the
mainpartof the solutionandthe secondpartrepresentshe
solutionalongtheraysby stretchingthe coordinates.

This approachand analysisof the behaior of VLFP
will bedevelopedfurther. The detailsandobtainedresults
will bepresentednddiscussedtthe Workshop.

Laterwewill extendthe presenteépproacho thecase
whenincidentwavespropagateerpendicularlyto the plat-
form andto the casewhenincidentwaves propagatdrom
(—00, —0). Thesameanalysiswe aregoingto extendto the
problemfor two otherforms of the platform: the strip of
semi-infinitelengthandplateof finite sizes.The latteris a
morerealisticcaseandit is the maingoalof our study

WK, Y) = Wi +Ws
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Question by : T. Miloh
Is it true that your solution is vdid only away from the origin and is it possible to obtain a
locd solution &t the corner?

Author’sreply:

Y es, indeed our solution is not vaid near the corner of the plate.

Yes, it seems possible to obtain a solution a the corner point and in shadow region generated
by the presence of the corner. Hopefully, on the next Workshop we will show these results.

Question by : M. Ohkuhu

A problem you treated with is dmost the same as those studied in the papers of Takagi (2002)
and Ohkusu (2003) you referred. It seems though more generd, is somehow mathematicaly
rddlated to the ones of those papers. | wonder if you would give a description of the
relationship of them.

Author’sreply:

Yes, in dl three papers the quarter-infinite plate is consdered. But in our paper, the generd
case - case of finite depth is sudied. Then, by taking the limits, we can solve the problems for
infinite and shalow water, which is consdered in the referred papers.

The results we presented are vaid for restricted vaues of the angle of incidence. In future we
will extend our gpproach to unrestricted incident angle.

Question by : D.V Evans
Isyour theory aray theory, only valid for short waves?

Author’sreply:

In the derivation of the direct and reflected wave fields we have not used smdl vaues of the
wavdength explicitly. However, to obtan smooth solution we introduced a coordinate
Stretching to end up with a parabolic equation. So our approach is valid only for short waves.



